数据挖掘导论读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 769页 | 9.0 | 2020 | 机械工业出版社 |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
59.00元 | 2020-02-20 … | 2020-03-08 … | 47 |
主题/类型/题材/标签
数据挖掘,机器学习,算法,Data-Mining,计算机科学,计算机,数据研究,Mining,
作者
(美)Pang-Ning Tan ISBN:9787111316701 原作名/别名:《》
内容和作者简介
数据挖掘导论摘要
本书全面介绍了数据挖掘的理论和方法,着重介绍如何用数据挖掘知识解决各种实际问题,涉及学科领域众多,适用面广。
书中涵盖5个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。
本书特色
·包含大量的图表、综合示例和丰富的习题。
·不需要数据库背景,只需要很少的统计学或数学背景知识。
·网上配套教辅资源丰富,包括ppt、习题解答、数据集等。
作者简介Pang-Ning Tan现为密歇根州立大学计算机与工程系助理教授,主要教授数据挖掘、数据库系统等课程。他的研究主要关注于为广泛的应用(包括医学信息学、地球科学、社会网络、Web挖掘和计算机安全)开发适用的数据挖掘算法。
Michael Steinbach拥有明尼苏达大学数学学士学位、统计学硕士学位和计算机科学博士学位,现为明尼苏达大学双城分校计算机科学与工程系助理研究员。
Vipin Kumar现为明尼苏达大学计算机科学与工程系主任和William Norris教授。1988年至2005年,他曾担任美国陆军高性能计算研究中心主任。
本书后续版本
未发行或暂未收录
喜欢读〖数据挖掘导论〗的人也喜欢:
相关搜索
友情提示
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。