Doing Bayesian Data Analysis读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 672页 | 9.0 | 2020 | Academic Press |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
GBP 64.48 | 2020-02-20 … | 2020-05-27 … | 12 |
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book b...
作者简介There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all scenarios addressed by non-Bayesian textbooks--t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). This book is intended for first year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Prerequisite is knowledge of algebra and basic calculus. Author website: http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/
-Accessible, including the basics of essential concepts of probability and random sampling -Examples with R programming language and BUGS software -Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). -Coverage of experiment planning -R and BUGS computer programming code on website -Exercises have explicit purposes and guidelines for accomplishment
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。