Statistical Methods for Categorical Data Analysis, 2nd Edition读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 296页 | 2020 | Emerald Group Publishing Ltd |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
USD 69.95 | 2020-02-20 … | 2020-03-08 … | 41 |
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. An explicit aim of the book is to integrate the transformational and the latent variable approach, two diverse but complementary traditions dealing with the analysis of categorical data. This is the first introductory text to cover models and methods for discrete dependent variables, cross-classifications, and longitudinal data in a rigorous, yet accessible, manner in a single volume.The second edition of this book includes new material on multilevel models for categorical data. Several chapters have undergone extensive revisions and extensions to include new applications and examples. Highlights of the 2nd edition include a detailed discussion of classical and Bayesian estimation techniques for hierarchical/multilevel models, extensive coverage of discrete-time hazard models and Cox regression models, and methods for evaluating and accommodating departures from model assumptions. The accompanying website contains programming scripts to replicate each example using various statistical packages, which has proven to be an invaluable resource for instructors, students, and researchers.This book presents the essential methods and models that form the core of contemporary social statistics. The book covers a remarkable range of models that have applications in sociology, demography, psychometrics, econometrics, political science, biostatistics, and other fields. It will be especially useful as a graduate textbook for students in advanced social statistics courses and as a reference book for applied researchers. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
作者简介[美]丹尼尔•A.鲍威斯(Daniel A. Powers 美国得克萨斯大学奥斯汀分校社会学系副教授和人口研究中心研究员。其研究领域包括:应用统计学和研究方法、社会人口学、社会分层、生育和死亡研究,最近的研究主要是婴儿死亡的种族差异和非线性模型的分解技术。主要著作有《分类数据分析的统计方法》。
谢宇(Xie Yu),美国密歇根大学的Otis Dudley Duncan杰出教授,同时担任密歇根大学社会学系、统计系和中国研究中心的教授,社会研究院(ISR)人口研究中心和调查研究中心的研究员,调查研究中心量化方法组主任。2004年当选美国艺术与科学院院士和“台湾中央研究院”院士。其研究领域包括:社会分层、统计方法、人口学、科学社会学和中国研究。主要著作有《分类数据分析的统计方法》、《科学界的女性》、《美国亚裔的人口统计描述》、《社会学方法与定量研究》、《婚...
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。