机器学习中的概率统计读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 276页 | 2020 | 机械工业出版社 |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
79.00元 | 2020-12-01 … | 2021-03-26 … | 16 |
主题/类型/题材/标签
机器学习,计算机,概率统计,通俗易懂,
作者
张雨萌 ISBN:9787111669357 原作名/别名:《》
内容和作者简介
机器学习中的概率统计摘要
读者对象:
想要对机器学习进行深入学习的相关人士;想要对概率统计进一步深入系统地学习的学生和业内人士;金融量化等数据分析行业的从业者;理工科专业高年级本科生和研究生。
本书围绕机器学习算法中涉及的概率统计知识展开介绍,沿着概率思想、变量分布、参数估计、随机过程和统计推断的知识主线进行讲解,结合数学的本质内涵,用浅显易懂的语言讲透深刻的数学思想,帮助读者构建理论体系。同时,作者在讲解的过程中注重应用场景的延伸,并利用Python工具无缝对接工程应用,帮助读者学以致用。
全书共5章。
第1章以条件概率和独立性作为切入点,帮助读者建立认知概率世界的正确视角。
第2章介绍随机变量的基础概念和重要分布类型,并探讨多元随机变量间的重要关系。
第3章介绍极限思维以及蒙特卡罗方法,并重点分析极大似然估计方法以及有偏无偏等重要性质,最后拓展到含有隐变量的参数估计问题,介绍EM算法的原理及其应用。
第4章由静态的随机变量过渡到动态的随机过程,重点介绍马尔可夫过程和隐马尔可夫模型。
第5章聚焦马尔可夫链-蒙特卡罗方法,并列举实例展示Metropolis-Hastings和Gibbs的具体采样过程。
作者简介张雨萌
资深人工智能技术专家,毕业于清华大学计算机系,长期从事人工智能领域相关研究工作,谙熟机器学习算法应用及其背后的数学基础理论。目前已出版多部机器学习数学基础类畅销书籍,广受读者好评。
本书后续版本
未发行或暂未收录
喜欢读〖机器学习中的概率统计〗的人也喜欢:
相关搜索
友情提示
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。