Deep Learning读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 900页 | 2020 | MITP Verlags GmbH |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
EUR 80.00 | 2020-02-20 … | 2020-04-07 … | 28 |
Deep Learning ist eine Form des Machine Learnings, die Computer in die Lage versetzt, aus Erfahrungen zu lernen und so die Welt als miteinander verbundene Ansammlung von hierarchischen Konzepten zu begreifen. Da der Computer Wissen aus der eigenen Erfahrung sammelt, muss kein Mensch mehr alle benötigten Kenntnisse formal eingeben. Die Hierarchie der Konzepte ermöglicht dem Computer das Erlernen komplexer Konzepte, indem er sie aus einfacheren Bausteinen zusammensetzt. Dabei besteht ein Graph dieser Hierarchien aus vielen Schichten. Dieses Buch behandelt eine Vielzahl von Themen rund um das Deep Learning.
Es vermittelt dazu mathematische sowie begriffliche Hintergrundinformationen und stellt relevante Konzepte aus den Bereichen lineare Algebra, Wahrscheinlichkeitstheorie und Informationstheorie, numerische Berechnung und Machine Learning vor. Neben einer Beschreibung der in der Praxis genutzten Deep-Learning-Techniken - darunter tiefe Feedforward-Netze, Regularisierung, Optimierungsalgorithmen, konvolutionale Netze, Sequenzmodellierung und praxisorientierte Methodologie - werden auch Anwendungen wie Natural Language Processing, Spracherkennung, Computer Vision, Online-Empfehlungssysteme, Bioinformatik und Videospiele betrachtet. Außerdem bietet das Buch Einblicke in die Forschung und befasst sich dazu mit theoretischen Aspekten wie Linearfaktormodellen, Autoencodern, Representation Learning, strukturierten Wahrscheinlichkeitsmodellen, dem Monte-Carlo-Verfahren, der Partitionsfunktion und der näherungsweisen Inferenz.
Deep Learning eignet sich für alle, die während des Bachelor- oder Master-Studiums ihre Laufbahn in Forschung oder Wirtschaft planen, aber auch für Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Die Website zum Buch bietet ergänzende Materialien für Leser und Lehrkräfte.
作者简介作者简介
Ian Goodfellow,谷歌公司(Google) 的研究科学家,2014 年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。Ian Goodfellow 在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。
Yoshua Bengio,蒙特利尔大学计算机科学与运筹学系(DIRO) 的教授,蒙特利尔学习算法研究所(MILA) 的负责人,CIFAR 项目的共同负责人,加拿大统计学习算法研究主席。Yoshua Bengio 的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。
Aaron Courville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA 实验室的成员。...
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。