Reinforcement Learning 新书_图书内容介绍_剧情呢
剧情呢 国产剧 港剧 泰剧

Reinforcement Learning读书介绍

类别 页数 译者 网友评分 年代 出版社
书籍 552页 9.8 2020 A Bradford Book
定价 出版日期 最近访问 访问指数
USD 76.00 2020-02-20 … 2020-03-11 … 95
主题/类型/题材/标签
强化学习,人工智能,机器学习,RL,计算机科学,数学,MachineLearning,计算机,
作者
Richard S. Sutton      ISBN:9780262039246    原作名/别名:《》
内容和作者简介
Reinforcement Learning摘要

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

作者简介

Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.

本书后续版本
未发行或暂未收录
喜欢读〖Reinforcement Learning〗的人也喜欢:

  • The Sea of Learning 海外中国研究,社会史,思想史,历史,清史,岭南,明清史,广州, 2020-02-20 …
  • Deep Learning 深度学习,机器学习,DeepLearning,人工智能,AI,MachineLearning,计算机,计算机科学, 2020-02-20 …
  • Powerful Learning 管理,学习方法,外语原版书, 2020-02-20 …
  • Information Theory, Inference and Learning Algorit 机器学习,信息论,Data_Science.Information, 2020-02-20 …
  • Algebraic Geometry and Statistical Learning Theory 统计学习,机器学习,数学,代数几何,计算机科学,统计,计算机-ai,计算, 2020-02-20 …
  • Learning the vi Editor vi,linux,O'Reilly,软件开发,计算机科学,计算机,英文版,英文原版, 2020-02-20 …
  • Learning the vi and Vim Editors vim,linux,O'Reilly,VI,editor,编辑器,计算机,Vim, 2020-02-20 …
  • Reinforcement Learning 机器学习,强化学习,人工智能,AI,Reinforcement,计算机科学,增强学习,计算机, 2020-02-20 …
  • Reinforcement Learning 强化学习,人工智能,机器学习,RL,计算机科学,数学,MachineLearning,计算机, 2020-02-20 …
  • Introduction to Machine Learning, Second Edition ( 机器学习,MachineLearning,数据挖掘,计算机科学,MIT,CS,AI,大数据, 2020-02-20 …
  • 友情提示

    剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。