基础数论 新书_图书内容介绍_剧情呢
剧情呢 国产剧 港剧 泰剧

基础数论读书介绍

类别 页数 译者 网友评分 年代 出版社
书籍 312 页 9.3 2020 世界图书出版公司
定价 出版日期 最近访问 访问指数
49.00元 2020-02-20 … 2021-09-23 … 60
主题/类型/题材/标签
数学,数论,经典,Mathematics,教材,自然科学,
作者
(法)Andre Weil      ISBN:9787510004551    原作名/别名:《》
内容和作者简介
基础数论摘要

The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long forgotten manuscript by Coevally, of prewar vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially complete account of the main features of class field theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points.

目录

Chronological table

Prerequisites and notations

Table of notations

PART Ⅰ ELEMENTARY THEORY

Chapter Ⅰ Locally compact fields

1 Finite fields

2 The module in a locally compact field

3 Classification of locally compact fields

4 Structure 0f p-fields

Chapter Ⅱ Lattices and duality over local fields

1 Norms

2 Lattices

3 Multiplicative structure of local fields

4 Lattices over R

5 Duality over local fields

Chapter Ⅲ Places of A-fields

1 A-fields and their completions

2 Tensor-products of commutative fields

3 Traces and norms

4 Tensor-products of A-fields and local fields

Chapter Ⅳ Adeles

1 Adeles of A-fields

2 The main theorems

3 Ideles

4 Ideles of A-fields

Chapter Ⅴ Algebraic number-fields

1, Orders in algebras over Q

2 Lattices over algebraic number-fields

3 Ideals

4 Fundamental sets

Chapter Ⅵ The theorem of Riemann-Roch

Chapter Ⅶ Zeta-functions of A-fields

1 Convergence of Euler products

2 Fourier transforms and standard functions

3 Quasicharacters

4 Quasicharacters of A-fields

5 The functional equation

6 The Dedekind zeta-function

7 L-functions

8 The coefficients of the L-series

Chapter Ⅷ Traces and norms

1 Traces and norms in local fields

2 Calculation of the different

3 Ramification theory

4 Traces and norms in A-fields

5 Splitting places in separable extensions

6 An application to inseparable extensions

PART Ⅱ CLASSFIELD THEORY

Chapter IX Simple algebras

1 Structure of simple algebras

2 The representations of a simple algebra

3 Factor-sets and the Brauer group

4 Cyclic factor-sets

5 Special cyclic factor-sets

Chapter Ⅹ Simple algebras over local fields

1 Orders and lattices

2 Traces and norms

3 Computation of some integrals

Chapter Ⅺ Simple algebras over A-fields

1. Ramification

2. The zeta-function of a simple algebra

3. Norms in simple algebras

4. Simple algebras over algebraic number-fields . .

Chapter Ⅻ. Local classfield theory

1. The formalism of classfield theory

2. The Brauer group of a local field

3. The canonical morphism

4. Ramification of abelian extensions

5. The transfer

Chapter XIII. Global classfield theory

I. The canonical pairing

2. An elementary lemma

3. Hasse's "law of reciprocity" .

4. Classfield theory for Q

5. The Hiibert symbol

6. The Brauer group of an A-field

7. The Hilbert p-symbol

8. The kernel of the canonical morphism

9. The main theorems

10. Local behavior of abelian extensions

11. "Classical" classfield theory

12. "Coronidis loco".

Notes to the text

Appendix Ⅰ. The transfer theorem

Appendix Ⅱ. W-groups for local fields

Appendix Ⅲ. Shafarevitch's theorem

Appendix Ⅳ. The Herbrand distribution

Index of definitions

作者简介

Andre Weil 1906年5月6日出生于巴黎,1928年于巴黎大学获得博士学位,他曾先后在印度,法国,美国及巴西等国执教,1958年来到普林斯顿高等研究院从事研究工作,离休后现任该处终身教授。

Andre Weil的工作为抽象代数几何及Abel簇的现代理论的研究奠定了基础,他的大多数研究工作都在致力于建立“数论”、“代数几何”之间的联系,以及发明解析数论的现代方法。Weil是1934年左右成立的Bourbaki学派的创始人之一,此学派以集体名称N.Bourbaki出版了有着很高影响力的多卷专著《数学的基础》。

本书后续版本
未发行或暂未收录
喜欢读〖基础数论〗的人也喜欢:

  • 微观金融学及其数学基础 金融,金融数学,数学,金融工程,金融学,教科书,复旦,金融计量, 2020-02-20 …
  • 中医基础理论 中医,中医入门,基础理论,医学,中醫,教材,学习,文化, 2020-02-20 …
  • 代数学基础 数学,代数,Algebra,国外数学名著经典,沙法列维奇,Mathematics,经典,科普, 2020-02-20 …
  • 德国公法学基础理论 公法,陈新民,德国,德国公法学基础理论,宪法,法学,宪法与行政法,德国法, 2020-02-20 …
  • 算法Ⅰ~Ⅳ(C++实现):基础、数据结构、排序和搜索 算法,algorithm,编程,数据结构与算法,programming,计算机,C++,程序设计, 2020-02-20 …
  • 自然语言计算机形式分析的理论与方法(精)/当代科学技术基础理论与前沿问题研究丛书 NLP,语言学,自然语言处理,计算机,机器学习,知识-专业,思维,形式句法, 2020-02-20 …
  • 德国公法学基础理论(上下) 陈新民,德国,公法,法律,行政法,法哲学,德国法,宪法学, 2020-02-20 …
  • 中国建筑遗产保护基础理论 建筑,遗产保护,遗产,文化遗产,保护,规划,理论,文遗保护, 2020-02-20 …
  • 中医基础理论 中医,中医入门,医学,教材,中医养生,专业课,课本, 2020-02-20 …
  • 基础数论 数学,数论,经典,Mathematics,教材,自然科学, 2020-02-20 …
  • 相关搜索
    友情提示

    剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。