代数几何中的拓扑方法 新书_图书内容介绍_剧情呢
剧情呢 国产剧 港剧 泰剧

代数几何中的拓扑方法读书介绍

类别 页数 译者 网友评分 年代 出版社
书籍 234页 2020 北京世界图书出版公司
定价 出版日期 最近访问 访问指数
39.00元 2020-02-20 … 2020-03-03 … 34
主题/类型/题材/标签
代数几何,数学,拓扑,几何与拓扑,经典,拓扑学,大师,Math,
作者
Friedrich Hirzebruch      ISBN:9787506271875    原作名/别名:《Topological Methods in Algebraic Geometry》
内容和作者简介
代数几何中的拓扑方法摘要

In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These t...

作者简介

In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holo morphically complete. J. -P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc. ) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory. I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954.

本书后续版本
未发行或暂未收录
喜欢读〖代数几何中的拓扑方法〗的人也喜欢:

  • 命运之神应置何方 科普,量子,理论哲学及衍生,物理学,物理,深图,测量,吉林人民出版社, 2020-02-20 …
  • 代数几何中的拓扑方法 代数几何,数学,拓扑,几何与拓扑,经典,拓扑学,大师,Math, 2020-02-20 …
  • 愛在何方 山田ユギ,日本,耽美漫画,BL漫画,漫画,BL,聼漫,耽美, 2020-02-20 …
  • 我们身在何方? 想读,一定很精彩!,管理,好书,值得一读,我想读这本书,随笔,查尔斯·汉迪,英国,外国文学, 2020-02-20 …
  • 梦圆何方 其他 2020-02-20 …
  • 何方談毛澤東外交 何方,中国史.近现代,繁体,2019, 2020-02-20 …
  • 敢问路在何方之背叛篇() 奇幻 2020-02-20 …
  • 灵魂啊!你在何方? Possible Worlds() 剧情 科幻 悬疑 犯罪 2020-02-20 …
  • 敢问路在何方() 奇幻 2020-02-20 …
  • 何方神圣 何方神聖() 喜剧 2020-02-20 …
  • 友情提示

    剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。