Toric Varieties读书介绍
类别 | 页数 | 译者 | 网友评分 | 年代 | 出版社 |
---|---|---|---|---|---|
书籍 | 841页 | 2020 | American Mathematical Society |
定价 | 出版日期 | 最近访问 | 访问指数 |
---|---|---|---|
USD 95.00 | 2020-02-20 … | 2021-02-17 … | 73 |
Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry.
Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
作者简介David A. Cox: Amherst College, MA,
John B. Little: College of the Holy Cross, Worcester, MA,
Henry K. Schenck: University of Illinois at Urbana-Champaign, Urbana, IL
剧情呢,免费看分享剧情、挑选影视作品、精选好书简介分享。